智能控制是自動(dòng)控制發(fā)展的高級(jí)階段,是人工智能、控制論、系統(tǒng)論和信息論等多種學(xué)科的高度綜合與集成,它主要包括模糊控制、神經(jīng)網(wǎng)絡(luò)控制、學(xué)習(xí)控制和專家控制等。智能控制在各種非穩(wěn)定的動(dòng)態(tài)工程系統(tǒng)中的應(yīng)用日益廣泛與深入,特別是近年來(lái)取得的研究與應(yīng)用成果更受矚目[1、2]。由于污水處理的運(yùn)行費(fèi)用是龐大的、長(zhǎng)期的,如果通過有效的控制能將城市污水處理廠的運(yùn)行費(fèi)用節(jié)省1%,也是個(gè)天文數(shù)字。由此可見,加強(qiáng)城市污水處理系統(tǒng)智能控制的研究非常必要。
1
國(guó)內(nèi)外自控技術(shù)現(xiàn)狀分析
發(fā)達(dá)國(guó)家在二級(jí)處理普及以后投入大量資金和科研力量加強(qiáng)污水處理設(shè)施的監(jiān)測(cè)、運(yùn)行和管理,實(shí)現(xiàn)了計(jì)算機(jī)控制、報(bào)警、計(jì)算和瞬時(shí)記錄。美國(guó)在20世紀(jì)70年代中期開始實(shí)現(xiàn)污水處理廠的自動(dòng)控制,目前主要污水處理廠已實(shí)現(xiàn)了工藝流程中主要參數(shù)的自動(dòng)測(cè)試和控制。80年代以來(lái)在美國(guó)召開了兩次水處理儀器和自動(dòng)化的國(guó)際學(xué)術(shù)會(huì)議,會(huì)上發(fā)表的數(shù)百篇論文反映出水處理自動(dòng)化已發(fā)展到實(shí)用水平[3]。與國(guó)外相比,我國(guó)污水處理自動(dòng)化控制起步較晚,進(jìn)入90年代以后污水處理廠才開始引入自動(dòng)控制系統(tǒng)[4、5],但多是直接引進(jìn)國(guó)外成套自控設(shè)備,國(guó)產(chǎn)自動(dòng)控制系統(tǒng)在污水處理廠應(yīng)用很少。
近年來(lái),國(guó)內(nèi)外均有學(xué)者對(duì)污水處理自動(dòng)控制工藝進(jìn)行研究,以尋求更精確、更可靠的方法實(shí)施自動(dòng)控制。Zipper等[6]開發(fā)了適用于小型污水處理廠的自動(dòng)控制系統(tǒng),該系統(tǒng)采用基于氧化還原電位(ORP)的控制器。這個(gè)控制器自動(dòng)工作,并可以在硝化和反硝化之間進(jìn)行優(yōu)化,從而減少能耗,他們?cè)谥性囍邪l(fā)現(xiàn),污水處理廠的實(shí)際負(fù)荷與ORP曲線變化具有很強(qiáng)的相關(guān)性。采用兩點(diǎn)ORP控制保證了在增加負(fù)荷時(shí)硝化時(shí)間占運(yùn)行時(shí)間的比率也隨之增加,這些都為開發(fā)小型污水處理廠控制規(guī)則奠定了基礎(chǔ)。
John等[7]采用兩種SBR反應(yīng)器對(duì)家禽生產(chǎn)廢水進(jìn)行處理,并且評(píng)價(jià)了它們的處理效率,同時(shí)也考察了脫氮與反應(yīng)器ORP之間的關(guān)系,并且使用了用于實(shí)時(shí)pH、ORP和DO監(jiān)控的先進(jìn)儀器設(shè)備和基于ORP設(shè)定值控制曝氣時(shí)間的過程控制。當(dāng)處理變組分廢水時(shí),該研究不僅獲得了穩(wěn)定的出水水質(zhì),而且依靠ORP控制曝氣時(shí)間,減少了空壓機(jī)的運(yùn)行時(shí)間。Yu等[8]設(shè)計(jì)研究了一套帶有實(shí)時(shí)ORP和pH控制系統(tǒng)的連續(xù)進(jìn)水SBR反應(yīng)器。該實(shí)時(shí)監(jiān)測(cè)和控制系統(tǒng)由傳感器、計(jì)算機(jī)、人機(jī)對(duì)話界面和控制部件組成。SBR反應(yīng)器中安裝了4個(gè)帶有Ag/AgCl電極的ORP儀表、1個(gè)DO表和1個(gè)pH儀表,傳感器的模擬信號(hào)通過AD/DA轉(zhuǎn)換器轉(zhuǎn)換成數(shù)字信號(hào),并且依靠計(jì)算機(jī)每秒鐘采集一次信號(hào)。計(jì)算機(jī)對(duì)采集來(lái)的數(shù)據(jù)進(jìn)行分析后,通過控制線路傳遞到繼電器,由它開/關(guān)攪拌器、潷水器和鼓風(fēng)機(jī)。試驗(yàn)結(jié)果顯示,采用實(shí)時(shí)控制的SBR反應(yīng)器在底物去除效率和降低能耗方面均優(yōu)于采用時(shí)序控制的SBR反應(yīng)器。Puznava等[9]在同步硝化/反硝化的生物濾池中引入了實(shí)時(shí)曝氣控制,建立了基于DO在線監(jiān)測(cè)的反饋控制和基于氨氮和DO在線監(jiān)測(cè)的串聯(lián)控制。與傳統(tǒng)硝化—反硝化生物曝氣濾池(BAF)相比,采用實(shí)時(shí)曝氣控制的生物濾池在達(dá)到相同處理效果(出水TN<20mg/L)時(shí),曝氣量低于傳統(tǒng)方法的50%。王淑瑩[10]在國(guó)外已有的時(shí)間和流量程序控制的基礎(chǔ)上,提出一種SBR法有機(jī)物濃度控制,使控制過程更定量化和精密化。工業(yè)廢水的水質(zhì)變化很大,當(dāng)進(jìn)水有機(jī)物濃度高時(shí),為使出水水質(zhì)達(dá)標(biāo),應(yīng)適當(dāng)增加反應(yīng)時(shí)間使運(yùn)行更可靠;而當(dāng)進(jìn)水有機(jī)物濃度低時(shí)可以減少反應(yīng)時(shí)間以節(jié)省運(yùn)行費(fèi)用。彭永臻等[11]將ORP作為SBR反應(yīng)器有機(jī)物降解程度間接指標(biāo)的研究結(jié)果表明,無(wú)論是在很大范圍內(nèi)改變曝氣量或者改變MLSS濃度,還是使反應(yīng)初始COD在230~2180mg/L之間逐漸變化或突然變化,當(dāng)COD達(dá)到難降解濃度時(shí),ORP都迅速、大幅度地升高,隨后又很快趨于平穩(wěn),并在某一特定范圍內(nèi)穩(wěn)定下來(lái)。因此,可以用ORP作為SBR法反應(yīng)時(shí)間的計(jì)算機(jī)控制參數(shù),實(shí)現(xiàn)計(jì)算機(jī)在線自動(dòng)控制。
通過以上分析,目前污水處理自動(dòng)控制中存在以下問題:
、
傳統(tǒng)污水處理自動(dòng)控制系統(tǒng)要求建立精確的數(shù)學(xué)模型,并且提出必須遵循一些比較苛刻的線性化假設(shè),然而實(shí)際污水處理系統(tǒng)由于存在復(fù)雜性、非線性、時(shí)變性、不確定性和不完全性等,一般無(wú)法獲得精確的數(shù)學(xué)模型和與實(shí)際相符的假設(shè),因此采用傳統(tǒng)控制理論建立的污水處理自動(dòng)控制系統(tǒng)在實(shí)際工程應(yīng)用上存在出水水質(zhì)波動(dòng)較大等問題。
、
污水處理自動(dòng)控制系統(tǒng)中所采用的一些自動(dòng)化檢測(cè)設(shè)備、儀表的功能目前還很不完善,在實(shí)際檢測(cè)中達(dá)不到預(yù)期效果、誤差很大,因此依靠這些檢測(cè)設(shè)備判斷污水處理情況并實(shí)施自動(dòng)控制,往往很難達(dá)到處理水質(zhì)達(dá)標(biāo)排放和節(jié)約能源的目的。
、
國(guó)內(nèi)外許多學(xué)者為提高污水處理廠的處理效率和降低能耗開展了許多實(shí)時(shí)控制研究,如采用ORP、DO和pH值作為控制參數(shù)來(lái)控制出水水質(zhì)和減小曝氣量,但這些方法也存在一些問題,例如控制污水處理廠硝化—反硝化過程所使用的ORP就很難判定,因此絕大多數(shù)基于ORP控制的污水處理廠也執(zhí)行時(shí)間控制,作為當(dāng)控制器無(wú)法找到ORP特征點(diǎn)時(shí)的應(yīng)急控制,這樣就導(dǎo)致許多污水處理系統(tǒng)實(shí)際上仍然采用的是按時(shí)間控制整個(gè)處理過程。
④
污水處理自動(dòng)控制有別于其他控制系統(tǒng),它需要對(duì)大量閥門、泵、鼓風(fēng)機(jī)和吸(刮)泥機(jī)、曝氣池和污泥消化池內(nèi)的攪拌器等機(jī)械設(shè)備及沉淀池和消化池進(jìn)、排泥量進(jìn)行控制,因此污水處理廠需要自動(dòng)控制的開關(guān)量多,它們常常要根據(jù)一定時(shí)間或邏輯順序定時(shí)開/停,然而目前我國(guó)生產(chǎn)的閥門質(zhì)量存在一些問題,使用壽命較短,如果從國(guó)外進(jìn)口價(jià)格又很昂貴,一般污水處理廠很難承受,因此筆者認(rèn)為制約我國(guó)污水處理自動(dòng)控制發(fā)展的主要原因不是生產(chǎn)工藝問題,而是設(shè)備問題。
2
智能控制技術(shù)應(yīng)用與發(fā)展
作為智能控制重要分支的模糊控制、神經(jīng)網(wǎng)絡(luò)控制、專家控制和自學(xué)習(xí)控制等除了應(yīng)用到工業(yè)過程控制以外,已經(jīng)擴(kuò)大到軍事、醫(yī)學(xué)、高科技領(lǐng)域。由于智能控制系統(tǒng)具有自學(xué)習(xí)、自適應(yīng)和自組織功能,特別適用于復(fù)雜的污水處理動(dòng)態(tài)過程的控制,因此近年來(lái)智能控制在美國(guó)、歐洲、日本的給水處理、污水生物處理、污水的物理化學(xué)處理中都有典型的成功應(yīng)用,正在研究與開發(fā)的更是不勝枚舉[12]。從現(xiàn)在可以檢索到的有關(guān)污水處理自動(dòng)控制的研究論文來(lái)看,有近1/3的論文涉及到智能控制,可見智能控制已成為該領(lǐng)域的一個(gè)研究熱點(diǎn)與前沿課題,顯示出極為廣闊的應(yīng)用前景。
2.1
模糊控制
模糊控制(Fuzzy
Control)能將操作者或?qū)<业目刂平?jīng)驗(yàn)和知識(shí)表示成語(yǔ)言變量描述的控制規(guī)則,然后用這些規(guī)則去控制系統(tǒng)。因此,模糊控制特別適用于數(shù)學(xué)模型未知的、復(fù)雜的非線性系統(tǒng)的控制。正是基于模糊控制這些特點(diǎn),近年來(lái)它已成為污水處理系統(tǒng)的研究熱點(diǎn)。
1980年Tong等首次將模糊控制應(yīng)用到污水處理中,將出水BOD、SS、曝氣池MLSS、DO及出水氨氮濃度、回流污泥量等監(jiān)測(cè)數(shù)據(jù)作為輸入變量輸入該系統(tǒng),“模糊化”以后再與“規(guī)則集”進(jìn)行匹配,隨后確定相應(yīng)的控制手段,最后通過反模糊化得到量化的具體信號(hào)來(lái)實(shí)施控制。Flanagan利用Olsson等提出的曝氣池DO控制技術(shù),以沿池長(zhǎng)的DO濃度變化曲線來(lái)估計(jì)曝氣池中底物利用效率和微生物活性。他的知識(shí)庫(kù)中的知識(shí)不僅有根據(jù)工藝狀態(tài)確定采用何種控制措施這一類啟發(fā)性規(guī)則,而且還有DO曲線特征及相關(guān)工藝狀態(tài)方面的知識(shí)。Barnett把這些知識(shí)稱為“匯編知識(shí)”(compiled knowledge),“匯編知識(shí)”作為啟發(fā)性知識(shí)的補(bǔ)充,提高了系統(tǒng)解決問題的深度和廣度[13]。由于活性污泥法出水BOD或COD濃度通常隨出水懸浮物濃度增加而增大,因此Tsai等人建立了對(duì)出水懸浮物濃度進(jìn)行預(yù)測(cè)和控制的動(dòng)態(tài)活性污泥法模糊控制[14],他們所提出的模糊控制策略能有效地降低出水SS濃度,從而使處理系統(tǒng)的運(yùn)行穩(wěn)定可靠。


中國(guó)城鎮(zhèn)供水排水協(xié)會(huì)(中國(guó)水協(xié)) 住房和城鄉(xiāng)建設(shè)部城鎮(zhèn)水務(wù)發(fā)展戰(zhàn)略國(guó)際研討會(huì)指定網(wǎng)站 國(guó)際水協(xié)會(huì)中國(guó)委員會(huì)工作網(wǎng)站
技術(shù)支持:沃德高科(北京)科技有限公司 Copyright 2003-2011 版權(quán)所有 京ICP備12048982號(hào)-4
通信地址:北京市三里河路9號(hào)城科會(huì)辦公樓201(100835) Email:water@chinacitywater.org Fax:010-88585380 Tel:010-88585381版權(quán)所有: 水世界-中國(guó)城鎮(zhèn)水網(wǎng)